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ON THE MODULAR CURVES YE(7) 

EMMANUEL HALBERSTADT AND ALAIN KRAUS 

ABSTRACT. Let E denote an elliptic curve over Q and YE(7) the modular 
curve classifying the elliptic curves E' over Q such that the representations of 
Gal(Q/Q) in the 7-torsion points of E and of E' are symplectically isomorphic. 
In case E is given by a WeierstraB3 equation such that the C4 invariant is a 
square, we exhibit here nontrivial points of YE(7)(Q). From this we deduce 
an infinite family of curves E for which YE (7)(Q) has at least four nontrivial 
points. 

INTRODUCTION 

If K is a field of characteristic 0 and E is an elliptic curve over K, we denote 
by E[7] the K-group scheme kernel of the multiplication-by-7 map on E. The Weil 
pairing on E[7] is a nondegenerate alternating bilinear form, taking its values in 47, 
the K-group scheme of 7th roots of unity. Moreover, let K be an algebraic closure 
of K. The natural representation of Gal(K/K) in E[7] will be called simply the 
representation associated to E (whenever it is clear what K and K are). Suppose 
now that E is a given elliptic curve over Q. It- is known (cf. [4]) that there is 
a smooth affine algebraic curve YE(7), defined over Q and absolutely irreducible, 
which has the following property. For every field K of characteristic 0, the points 
of YE(K) correspond, by a canonical bijection, to the isomorphism classes of pairs 
(E', V'), where E' is an elliptic curve over K and T' is a symplectic isomorphism 
of K-group schemes from E[7] onto E'[7]. Two such pairs (E', V') and (E", '") 
are isomorphic if there is an isomorphism u of E' onto E" defined over K and 
such that '" = u o V'. Denote by XE(7) the smooth compactification of YE(7). 
From now on, YE (resp. XE) will stand for YE(7) (resp. XE(7)). The curve XE 
is a Galois twist of the modular curve X(7) which is, as one knows, isomorphic 
(over Q) to the Klein quartic. In particular, XE has genus 3, and so, over every 
number field, the number of its rational points is finite by Falting's theorem. The 
curve YE always has trivial points rational over Q. We say that a point of YE(Q) 
is trivial if it corresponds to a pair (E', V'), as above, where E' is an elliptic curve 
over Q isogenous over Q to E. The problem of the existence, on the curves YE, of 
nontrivial points rational over Q has been raised by B. Mazur (cf. [7], p. 133). The 
first examples of such points have been given in [4]. 

Given an equation for E, it is not easy to get explicit equations for YE (if the 
prime number 7 is replaced by 3 or 5, the corresponding explicit calculations have 
been done in [8], but the curves YE(3) and YE(5) have genus 0). As an example, 
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let E be the elliptic curve given by 

(1) Y2 + Y = X X2 

This elliptic curve has conductor 11, it is the curve 11A3 in the tables of [2]. As 
we know, E is isomorphic (over Q) to the modular curve X1(11). The associated 
curve YE has a nontrivial point rational over Q (we will explain later how we found 
this point), corresponding to the elliptic curve E' given by 

(2) Y2 + y = X3 - x2 - 8 526 286 x + 140 410 525 642. 

E' has conductor 20 185 = 5 x 11 x 367. The representations associated to the 
curves E, E' are symplectically isomorphic, but E and E' are not isogenous (over 
Q). 

The C4 invariant associated to equation (1) is 16. More generally, let E be 
an elliptic curve over a field of characteristic 0, with modular invariant j = j(E) 
different from 0 and 1728. As the equality 

C3C2 
j(j - 1728) 4 6 

shows, E has a Weierstraf3 model for which the C4 invariant is a square if and only 
if j(j - 1728) is a square. Among other things, we prove in this work that if E is 
defined over Q and satisfies the above condition, and if one excludes a finite number 
of values for j(E), then the associated curve YE has at least two (explicit) nontrivial 
points rational over Q (cf. Corollary 1). Therefore, if E is an arbitrary elliptic curve 
over Q, the curve YE has at least nontrivial points rational over a suitable quadratic 
field: just adjoin to Q a square root of j(E)(j(E) - 1728); here again, there are 
a finite number of exceptional values for j(E). In order to prove Corollary 1 we 
will exhibit, over the field Q(T), three elliptic curves E, E', E" whose associated 
representations are symplectically isomorphic, these representations being onto and 
the curves E, E', E" being pairwise nonisogenous (cf. Theorem 1). The elliptic curve 
E has the following property: if j = j(E) is its modular invariant, then j(j - 1728) 
is a square in Q(T), and E is, in a sense, universal for this property. Finally, 
Theorem 2 gives an infinite family of elliptic curves A over Q for which the curve 
YA has at least four nontrivial points rational over Q (see the details in ?5). 

1. THE ELLIPTIC CURVES E, E', E" 

Let T be an indeterminate. Denote by E, E', E" the elliptic curves over Q(T) 
given respectively by equations (3), (4), (5) below; these equations are minimal 
over Q[T]: 

(3) y2 = x3 + 7x2+ 28T, 

(4) y2 =x3 +X +a4(E/)x + a6(E'), 

(5) y2 = x3 + x2 + a4(E"/)x + a6(E"), 

the coefficients in (4) and (5) being 

{a4(E') = 7T3 + 7T2 _ 19T - 16, 
a6(E') = -T5 + 14T4 + 63T3 + 77T2 + 38T + 20, 
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a4 (E") = -(45 927T3 + 204 120T2 + 162 432T + 4 181), 

a6(E") = -(531441T5 + 12 262 509T4 + 39 287 997T3 

I + 43 008 840T2 + 8 670 080T - 102 675). 

The corresponding standard invariants are: 

c4(E) = 24 x 72, 

C6(E) =-26 x 7 x (54T + 49), 
i\(E) = -28 x 72 x T(27T + 49), 

jE) -24 x74 
j() T(27T+49) ) 

fc4(E') = -24 (21T3 + 21T2 -57T - 49), 

c6(E') = 25(27T5 - 378T4 -1638T3 - 2016T 2- 1197T - 686), 

A(E') = -24T2 (27T + 49)(T + 3)7, 

j(El) - 28(21T 3+21T2-57T-49)3 
J \ ~T2(27T+49)(T+3)7 

C4 (E") = 24[137 781T3 + 612 360T2 + 487 296T + 12 544], 

C6 (E") = 25 [14 348 907T5 + 331 087 743T4 + 1 060 362 576T3 

+ 1 159 401 600T2 + 232 630 272T -2 809 856], 

|i(E") = -24T(27T + 49)2 (27T -32)7, 

j(E" = -28(137781T3+612 360T2+487 296T+12 544)3 
T(27T+49)2(27T-32)7 

Let K be an extension of Q and t an element of K. Whenever we have 

(6) t 54 0, ~~~~-49 32 (6) t$0& ,-3, 279 '27' 

we denote by Et, Et, Et' the elliptic curves over K obtained from E, E', E" respec- 
tively, by specializing T to t. 

2. STATEMENT OF THE RESULTS 

Denote by Q an algebraic closure of Q(T) and by Q the algebraic closure of Q 
in Q. Here is the essential result of this work. 

Theorem 1. Consider the elliptic curves E, E', E" over Q(T) given by equations 
(3), (4) and. (5), respectively. Then: 

(a) the representations of Gal(Q/Q(T)) on the 7-torsion points of the elliptic 
curves E, E', E" are onto; 

(b) these three representations are pairwise symplectically isomorphic; 
(c) the elliptic curves E, E', E" are pairwise nonisogenous over Q. 

By specializing, we will obtain the corollary below, which exhibits a class of 
elliptic curves A over Q for which YA(Q) has at least two nontrivial points. 

Corollary 1. There is a finite subset S of Q, containing 0 and 1728 and having 
the following property: for every elliptic curve A over Q whose modular invariant 
j does not belong to S, and which satisfies the condition 

(*) j(j - 1728) is a square in Q, 

YA (Q) has at least two nontrivial points. 
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We do not have such a subset S explicitly. On the other hand, the following 
explicit result makes Corollary 1 more precise, as we shall see. An analogous result 
has been obtained already in [5], but the corresponding representations were not 
onto. 

Corollary 2. Let u be a nonzero integer divisible by 6. Set 

(7) t= 9 (u- 1), 
54 

and consider the elliptic curves Et, E Et'. Then: 

(a) the representations associated to the elliptic curves Et,Et,E"', respectively, 
are onto; 

(b) these three representations are pairwise symplectically isomorphic; 
(c) the elliptic curves Et, Et, Et' are pairwise nonisogeneous over Q. 

In this direction, there is an obvious question: What are the integers m > 1 
for which there exist m elliptic curves over Q, pairwise nonisogenous over Q, such 
that the m associated representations are symplectically isomorphic? Let k be the 
least upper bound for the set of such integers m. What can be said about k? In 
particular is it finite? Obviously the answer is yes if the Uniform Conjecture (cf. 
[1]) is taken for granted. A variant of this question is to find the least upper bound 
k' for the set of integers m > 1 for which there exist an infinity of m-tuples of 
elliptic curves over Q, pairwise nonisogenous over Q, such that the m associated 
representations are symplectically isomorphic. The following theorem shows that 
k' > 5. 

Theorem 2. There is an infinite family (explicitly given in ?5) of quintuples 
(El, E2, E3, E4, E5) of elliptic curves over Q with the following properties: 

(a) for i = 1, ... , 5, the representation associated to the elliptic curve Ei is onto; 
(b) the representations in (a) are pairwise symplectically isomorphic; 
(c) the elliptic curves Ei (i = 1, ... , 5) are pairwise nonisogenous over Q. 

The above family of quintuples is parametrized by (almost all) the rational points 
of a certain elliptic curve F over Q; the group F(Q) has rank 2. 

3. PROOF OF THEOREM 1 

3.1. Some preliminaries. To begin with, consider a field K of characteristic 0, 
an algebraic closure K of K and a continuous quadratic character X of Gal(K/K). 
Then denote by A an elliptic curve over K, by A' the twist of A by X, and by p and p' 
the representations associated to A and A', respectively. Since p' is symplectically 
isomorphic to X ? p, one easily sees that p' is onto if and only if p is onto. Similarly, 
let A1 be another elliptic curve over K, let A' be the twist of A1 by X, and let 
P1 and p' be the corresponding representations. The representations p and P1 are 
symplectically isomorphic if and only if the representations p' and p' are. 

The following lemmas will be useful in the various proofs. 

Lemma 1. Denote by A and A' two elliptic curves over K. Suppose A is without 
complex multiplication. If A and A' are isogenous over K, then A' is isogeneous 
over K either to A or to a quadratic twist of A. 
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Lemma 2. Let A be an elliptic curve over Q(T), given by a Weierstrajl equation 

y2 + a,(T)xy + a3(T)y = X3 + a2(T)x2 + a4(T)x + a6(T), 

and let i\(T) be the corresponding discriminant. Then: 
(a) Let t be a rational number. Suppose that i\(t) is nonzero and that t is not 

a pole of a1, a2,a3,a4 or a6. Let At be the elliptic curve over Q obtained from 
A by specializing T to t. If the representation associated to At is onto, so is the 
representation to A. 

(b) Let A' be another elliptic curve over Q(T), given by a Weierstrajl equation 
as above. Suppose that the representations associated to A and A' are symplecti- 
cally isomorphic. Let t be a rational number. With obvious notation, suppose that 
,A(t)z\'(t) is nonzero and that t is not a pole of ai or a', for i = 1, 2, 3,4, 6. Then 
the representations associated to At and A' are symplectically isomorphic. 

Lemma 3. Denote by A1 and A2 two elliptic curves over a number field K. Sup- 
pose that A1 and A2 are not isogenous over Q. Let Z be a smooth projective 
algebraic curve, defined over K and absolutely irreducible. For i = 1, 2, let fi be 
a nonconstant morphism from Ai to Z defined over K. Under these assumptions, 
the pairs (P1,P2) e A1(K) x A2(K) such that fi(Pi) = f2(P2) form a finite set. 

Let us sketch the proofs of these lemmata. For Lemma 1, let f be an isogeny of 
degree n from A to A', and f0 the dual isogeny. For each element s of Gal(K/K), 
denote by 'f the transform of f by s. Since A is without complex multiplication, 
one has f 0 o 'f = ?i[n], and so 'f = ?f . The conclusion of Lemma 1 follows im- 
mediately. Lemma 2 comes essentially from [9], Lemma 2, p. 495. As for Lemma 3, 
one shows first that each irreducible component S (over Q) of the fibered product 
A1 xz A2 is a projective curve because Z is smooth, and so the projections from 
S to A1 and A2 are onto (the precise argument is due to M. Lazarus). Therefore 
S has genus > 2, because of the assumptions made. The conclusion follows from 
Faltings' theorem. 

3.2. The elliptic curves W, W', W". First, let A be an elliptic curve over a field 
K of characteristic 0. Suppose that the modular invariant j of A is different from 
O and 1728. Then j(j - 1728) is a square in K if and only if, A being replaced by 
one of its quadratic twists if necessary, A has a model for which C4 = 122. Given 
such a model, set 

(8) -C6 

1728. 
We have u 5$ 1, -1. Therefore A has the following model: 

(9) y2 =x -3x + 2u. 

More generally, if u 5$ 1, -1, denote by Wu, the plane projective cubic given by 
equation (9). The corresponding standard invariants are 

(C4(W) = 122 

Jc6(WO) = -123u, 

{Z(Wu) = 1728(1 - u2), 
j(wu) - 1728 

The considerations above show that if A is an elliptic curve over K whose modular 
invariant j is different from 0 and 1728, and if j(j - 1728) is a square in K, then 
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there is an element u of K such that A is isomorphic over K either to WI/ or to a 
quadratic twist of W147. Now let U be defined by the relation 

(10) T = (U-1). 

The elliptic curve Wu over Q(T) = Q(U) will be denoted simply by W. Then W 
is isomorphic to the curve E (defined by equation (3)) twisted by . Let us now 
twist the elliptic curves E' and E" (equations (4) and (5)) by v/2- and denote by 
W' and W" the elliptic curves over Q(T) thus obtained. The point in choosing 
the curves E', E" rather than W', W" is that the latter give more complicated 
invariants. On the other hand, note that W" can be obtained from W' as follows: 

(i) one substitutes -U for U in an equation for W'; 
(ii) the elliptic curve thus obtained is twisted by -1. 

Note also that if operations (i) and (ii) are performed on W, the resulting curve is 
W itself. For instance, taking the remarks in 3.1 into account, if one wants to prove 
that the representation associated to E" is onto, it will be enough to show that the 
representation associated to W' is onto. Denote now by K a field of characteristic 
0 and by u an element of K. Define t in terms of u by equation (7). Let W', W" 
be the curves deduced from W', W", respectively, by specializing U to u. These 
elliptic curves are twists of E, E"', respectively, by V2. The elliptic curve W' 
(resp. Wu") is defined as soon as u is different from 1, -1 and 4113 (resp. 113). 

3.3. Proof of assertion (a) in Theorem 1. Let p, p', p" be the representations 
associated to the elliptic curves E, E', E", respectively. Let us prove that p is onto. 
By Lemma 2, it is enough to find a rational number t satisfying (6) and such that 
the representation associated to Et is onto. Take t = 1. An equation for the curve 
E1 is 

y2 = X3 + 792 + 28. 

It is the curve denoted by E in the theorem of [4], p. 266. By Lemma 3 in loc. cit., 
the representation associated to E1 is onto. Likewise, an equation for E' is 

2 3 2 
y =x +x2-21x+211, 

a minimal model being given by 
2 3 2 

y =:x +x _x+3. 
This is the curve denoted by E' in the theorem of [4], and the same argument shows 
that the representation associated to E' is onto. Therefore the representations p' 
and p" are onto, as noted above. 

3.4. Proof of assertion (b) in Theorem 1. It is enough to show that p and p' 
are symplectically isomorphic. We follow (mutatis mutandis) the arguments used 
in the proof of the theorem in [4]. Consider the following polynomials over Q(T): 

P = (X2 + 5X + 1)3(X2 + 13X + 49) - j(E)X, 

Q = (X2 + 5X + 1)3(X2 + 13X + 49) - j(E')X. 

They are irreducible over Q(T) (cf. Lemma 4 in loc. cit.). Let x (resp. y) be a 
root of P (resp. Q) in Q. Let us prove that the fields Q(T)(x) and Q(T)(y) are 
conjugate over Q(T). This means that there is a polynomial 

R = 37X7 + 36X6 + - - - + 3o e Q(T)[X] 
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such that R(x) is a root of Q; i.e., it means that the following congruence is satisfied: 

(11) Q(R) _ 0 (mod P). 

With the help of the Pari software, one actually find rational fractions /i, i = 

0, ... , 7, for which the congruence (11) is satisfied. For i = 0, ... , 7, one has 

A 
a~~~~~Ci 

2 x 73(T + 3) (54T + 49) 

the ai being given by: 

ao = 49T(27T + 49) (69T - 7), 

a, = 2[478467T3 + 1648 710T2 + 1336671T - 134456], 

a2= (27T + 49)(107871T2 + 155 799T - 686), 

a3= T(27T + 49) (80 529T + 112 259), 

a4= 69T(27T + 49)(391T + 539), 

a5= 3T(27T + 49)(1559T + 2149), 

a6= 2T(27T + 49) (207T + 287), 

a7= 3T(27T + 49)(5T + 7). 

We will explain in ?6 how these coefficients and the curves E, E', E" were found. 
Now apply Lemma 5 of [4], mutatis mutandis. Since the fields Q(T)(x) and 

Q(T)(y) are conjugate over Q(T), this lemma shows that there is a continuous 
character E of Gal(Q/Q(T)) into {1, -1} such that p' is isomorphic to E 0 p. Let 
us show that E is trivial. Suppose it is not, and let L/Q(T) be the corresponding 
quadratic extension; one has L = Q(T)(v'P), for sonie D e Q(T)*. Looking at the 
places of bad reduction for E and E', then applying the Neron-Ogg-Shafarevitch 
criterion, one can suppose that D is given by 

D = dTa(27T + 49)b(T + 3)c 

where a, b, c are 0 or 1 and d is a squarefree integer. The curve E' has multiplicative 
reduction at T + 3, and the exponent of T + 3 and its discriminant is divisible by 
7. Therefore, by Tate's theory, p' is unramified at T + 3, so that c = 0. Let us 
specialize T to a rational number t satisfying (6). Let Pt, Pt be the representations 
associated to Et, Et, respectively. The representation pt is isomorphic to Et 0 Pt, 
where, setting Dt = D(t), Et is the character of Gal(Q/Q) corresponding to the 
extension Q(V4t)/Q. Therefore, if p is a prime number not dividing Dt, and if Et 
and Et have good reduction at p, one must have 

ap(Et) D(t) ap(Et) (mod 7), 

the ap being the coefficients of the Hasse-Weil L-functions of the elliptic curves 
considered. By choosing for t the values 1, 2 and 5, and by applying the above 
congruence with suitable primes p, one sees easily and successively that b = 0, then 
a = 0, and finally d = 1. Thus D = 1, a contradiction. 

One still has to show that p and p' are symplectically isomorphic. Apply Propo- 
sition 2 of [4], replacing in it Q by Q(T), the prime number p by 7, and the prime 
number e by the place of Q(T) associated to T. At this place the curves E and 
E' have multiplicative reduction, and the exponents of T in A(E) and A(E') are 1 
and 2, respectively. Since 2 is a square modulo 7, we have the desired conclusion. 
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3.5. End of the proof. Suppose that two of the curves E, E', E" are isogenous 
over Q, and denote them by A1 and A2. Clearly A1 and A2 are not isogenous over 
Q(T), because their places of bad reduction are not the same. These curves have 
no complex multiplication, so Lemma 1 shows that A2 is isogenous over Q(T) to 
a quadratic twist of A1. For i = 1,2, let ri be the representation associated to 
Ai. The representations r1 and r2 are isomorphic by assertion (b); therefore, this 
assertion shows that there is an automorphism 0 of A1 [7] and a quadratic character 
e of Gal(Q/Q(T)) such that, for every element s of Gal(Q/Q(T)), one has 

ri(.s)0 = E(s)Ori(s). 

Since r1 is onto, one sees at once that e is trivial, a contradiction. The proof of 
Theorem 1 is now complete. 

Let us look again for a moment at the elliptic curves E and E' defined in the 
introduction by equations (1) and (2), respectively. The standard invariants of E 
are 

C4= 16, c6 =-152, j= -4096 11I 

One checks that E is the twist of the curve Wu, corresponding to the parameter 
u = 19, by V/-; the corresponding value of t is t =539. So E is the twist of Et by 
V'1, and one sees that E' is the twist of Et by V+/i. Therefore, by Theorem 1 and 
Lemma 2, the representations associated to E and E' are symplectically isomorphic. 
The curves E and E' are not isogenous over Q: at 5 the curve E has good reduction 
and the curve E' has multiplicative reduction. On the other hand, if we denote 
here by E" the twist of Et' by v+/i, one sees that E" is isogenous to E over Q and 
that E" is the curve denoted by 1 1A2 in the tables in [2]. 

4. PROOF OF THE COROLLARIES 

4.1. Proof of Corollary 1. Let t be a rational number satisfying condition (6). 
From Theorem 1 and assertion (b) of Lemma 2, we know that the representations 
associated to Et, Et and Et' are symplectically isomorphic. Therefore, Corollary 1 
will be proven if we show that the elliptic curves Et, Et' and Et' are pairwise non- 
isogenous over Q, with a finite number of exceptions for t. To this end, consider, 
for every integer n > 1, the modular polynomial n e Z [X, Y]. One knows (cf. [6], 
pp. 55 and 59) that, if k is an algebraically closed field of characteristic 0 and if A 
and A' are elliptic curves over k, there is an isogeny of degree n from A onto A' 
with cyclic kernel if and only if 

n (j (A)I j(A')) = 0. 
Now let A and A' be two elliptic curves over Q. If these curves are isogenous over 
Q, there is an isogeny A from A onto A', defined over Q and having a cyclic kernel, 
say of order n. This kernel is a cyclic subgroup of order n of A[[n], defined over Q. 
Therefore the modular curve Yo(n) has a point rational over Q. Now the integers 
n for which Yo(n)(Q) is not empty constitute a finite set (cf. [11] and later results 
of Mestre and Kenku). Consider then the polynomial 

= (X - Y)J7J4n 
n 

In this product, n describes the finite set of integers just mentioned. If A and A' 
have no complex multiplication, Lemma 1 shows that A and A' are isogenous over 
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Q if and only if 4(j(A), j(A')) = 0. Set 

F = ()(E) I(E')) (j(E) I(E")) (j(E') I(E")). 

This is a nonzero element of Q(T), since the elliptic curves E, E', E" are pairwise 
nonisogenous over Q (Theorem 1). Let t be a rational number satisfying condition 
(6) and such that 

1) F(t) is nonzero, and 
2) the modular invariants j(Et), j(Et), j(Et') are not singular j-invariants. 

For such a t, the elliptic curves Et, Et and Et' are clearly pairwise nonisogenous over 
Q. Corollary 1 follows, since conditions 1) and 2) leave out only a finite number of 
values for t. 

4.2. The image of the representation associated to Et. Let t, u be two ratio- 
nal numbers satisfying conditions (6) and (7). What can be said about the image 
of the representation Pt associated to Et? In this subsection we show that generally 
Pt is onto, and we study the exceptional cases. From [10] we know that if Pt is not 
onto, its image is contained either in the normalizer of a Cartan subgroup or in 
a Borel subgroup of GL(Et[7]) (if A is an elliptic curve over Q and p is the asso- 
ciated representation, the projection of Im(p) in PGL(A[7]) cannot be isomorphic 
to %4,%5 or 54). Let us look at these exceptional cases. Let Xnonsplit(7) (resp. 
Xsplit(7)) be the modular curve which classifies the elliptic curves E whose associ- 
ated representation has its image contained in the normalizer of a nonsplit (resp. 
split) Cartan subgroup of GL(E[7]). 

There is an isomorphism between Xnonspfit(7) and P1(Q). If such an isomor- 
phism is suitably chosen, the j-function on Xnonsplit(7) gives on Pl (Q) the following 
rational function: 

(12) J1(x) = {(3x + 1)(x2 + lOx + 4)(x2 + 3x + 4)(4x2 + 5x + 2)} 

(12) Ji(x) - {~~(x3 + X2 - 2x - 11 

The image of Pt is contained in the normalizer of a nonsplit Cartan subgroup of 
GL(Et[7]) if and only if there is a rational number x such that Ji(x) = j(Et). For 
such an x, Ji(x)(Ji(x) - 1728) must be a square. As a little calculation shows, this 
is the same as saying that there is a rational number y such that 

y2 = (3x + 1)(x2 + lOx + 4)(x2 + 3x + 4)(4x2 + 5x + 2) 

x (16x4 + 68x3 + ii1X2 + 62x + 11). 

We have here an equation for a hyperelliptic curve having genus 5. Therefore the 
number of t for which the image of Pt is contained in the normalizer of a nonsplit 
Cartan subgroup of GL(Et[7]) is finite because of Faltings' theorem. 

The same argument works in the split case: just replace Xnonspht(7) by Xsplit(7) 
and J1 by 

(13) 

J2()=(I1-x){(x -2)(x 2?3x?+4) (X2?+3x -3) (X4?X3-_X2?+2x?+4)}13 
( X) { (X3 + X2 - 2x.- 1)}7 

We have here a hyperelliptic curve having genus 6, given by the equation 

y2 = (x-1)(x-2)(x2 + 3x + 4)(x2?+ 3x-3) 
x (x4 + x3-x2 + 2x + 4)(x4 + 6x3 + 32 _ 18x-19). 
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Again the number of t for which the image of Pt is contained in the normalizer of 
a split Cartan subgroup of GL(Et[7]) is finite because of Faltings' theorem. 

The case of Borel subgroups is different, as we show now. If an isomorphism of 
the modular curve Xo(7) onto P1(Q) is suitably chosen, the j-function on Xo(7) 
gives on P1 (Q) the following rational function (cf. [4], Appendix I): 

(14) J(x)-= (x2 + 5x + 1) 3(x2 + 13x + 49) 
x 

Now take an x e Q* and set j = J3(x). Then j(j - 1728) is a square if and only if 
there is a rational number y such that 

(15) y2 =(X2 + 5x + 1)(x2 + 13x + 49). 

If so, we have 

( 1728 
j = 2 by setting 

(16) X4+ 14x3 + 6392 + 70x - 7 

tu= y(x2+5x+ 1) 

So let t, u be two rational numbers satisfying conditions (6) and (7). The image of 
Pt is contained in a Borel subgroup of GL(Et [7]) if and only if there are two rational 
numbers x,y satisfying conditions (15) and (16), with j = j(Et). Consider then 
the plane quartic curve Q which is the projective completion of the curve given by 
equation (15). The normalization of Q is the elliptic curve C given by 

(17) Y2+Xy+y=X3+2X+32. 

Denote by ir a birational morphism from C onto Q (defined over Q). The elliptic 
curve C is the curve 294G1 in the tables of [2]. The group C(Q) has rank 1; it 
is generated by the points Po = (-3,1) (of order 2) and P = (1, -7) (of infinite 
order). 

In conclusion, there is an infinity of pairs of rational numbers (t, u) satisfying (6) 
and (7) and such that the image of Pt is contained in a Borel subgroup of GL(Et [7]). 
All these pairs are obtained as follows: start with a point M = (X, Y) of C(Q), 
different from 0, 3P, 4P, 7P, set ir(M) = (x, y), and then define u by (16) and t by 
(7). 

4.3. Proof of Corollary 2. Assertion (b) of this corollary results from Theorem 1 
and Lemma 2. Let t and u satisfy the hypotheses of Corollary 2. For assertion (a), 
it is enough to show that the representation ru associated to Wu is onto. It is easily 
seen that 1 - u2 is not a 7th power. So let p be a prime factor of 1 - u2 such that 
7 does not divide vp (1 - u2). The hypotheses show that p is different from 2 and 
3. Moreover, equation (9) is minimal, and Wu has at p multiplicative reduction. 
Since the exponent of p in A(Wu) is not divisible by 7, Tate's theory implies that 
7 divides the order of the image of ru. It suffices then to prove that this image is 
not contained in a Borel subgroup of GL(Wu[7]). Suppose it is. As we said in 4.2, 
there is an x E Q* such that 

1728 
-2 =J3(X)- 

By formula (14), one has v2(J3(x)) < 0; a contradiction follows, since u is an even 
integer. 
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For assertion (c), it is enough to show that Et cannot be isogenous over Q either 
to Et or to Et' (by the same argument as in 3.5). From (7), one has 

t + 3 = 
49u + 113 

27t - 32 = 
49u - 113 

54 ' 2 
Consider a prime factor p of 49u + 113; p is different from 2, 3 and 7. The formulas 
in ?1 show that at p the curve Et has good reduction and the curve Et has multi- 
plicative reduction. Therefore Et and Et are not isogenous over Q. If p is different 
from 113, the curve Et" has good reduction at p, so Et and Et" are not isogenous 
over Q. We have the same conclusion if 113 is the only prime factor of 49u + 113: 
just take a prime factor of 49u - 113 different form 113. The proof of Corollary 2 
is now complete. 

5. PROOF OF THEOREM 2 

The idea behind the construction of the quintuples in question is simple: consider 
two rational numbers t, u satisfying (6) and (7), and the corresponding elliptic 
curves Et, Et, Et". One has 

c4(E') = -24(21t3 + 21t2 - 57t - 49). 

We want the pair (t, u) to satisfy the following condition: 

(**) c4(Et) is a square; 

i.e., there is a rational number z satisfying 

(18) z2 = -24 (21t3 + 21t2 - 57t - 49). 

Set 

(19) v= -C6 (Et) 
z3 

and 

(20) s = 459(V 1). 

One checks that s is different form 0, -3, -79 and 32 so we can associate to s the 
elliptic curves E, E', E'. As seen in 3.2, Es is the twist of Et by v'7z. Consider 
now the following five elliptic curves: 

E1 = Et, 62 =Et', ?3= Et, 

64, twist of E' by V'_z, 65, twist of E" by V'7z. 
By Theorem 1 and Lemma 2, the representations associated to the ?i, i = 1,. . ., 5, 
are symplectically isomorphic. 

Consider now condition (**). The substitution 

(21) t= -(4x + 7) z - 32y x = -7(3t + 1), Y 321' 

transforms equation (18) into the following: 

(22) y2 = x3 - 84x + 196. 

This is a minimal equation for an elliptic curve denoted by F. The conductor of F 
is 10 584 = 23 x 33 x 72. The Mordell-Weil group F(Q) has rank 2; a basis for this 
group is (A, B), where 

A = (14,42), B = (0, 14). 
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Let M = (x, y) be a point of F(Q) such that 

(23) M 4 0, ?A, ?(2A + B), ?(3A - 2B). 

To the point M we associate first, by (21), a pair (t, z) satisfying (18), then the 
number u given by (7), and finally the pair (v, s) given by (19), (20). The condition 
(23) guarantees that s and t are different from 0, -3, 479 and 37. The pair (t, u) 
satisfies (6), (7) and (**), and so, to every point M = (x, y) of F(Q) satisfying (23), 
one associates a quintuple (?l, 62, 63, 64, 65) of elliptic curves over Q, for which the 
five associated representations are symplectically isomorphic. 

Here is a numerical example. Take M = 2A = (8, -6), so that t = 73 and 
s = 1469 The corresponding five elliptic curves Si have the following minimal 
equations: 

61: y2 = x3 + x2 - 16x-32, 

2: y2 = x3 + x2 -16x + 13, 

63: y2 = x3 + x 269 761 480x - 1 714 632 766 400, 

64: y2 = x3 + x2 + 6 243 015x + 577 597 883, 

65: y2 =x3 +x -2881x+73171. 

The conductors Ni = N(?i) are the following: 

N1 = 104 = 23 x 13, 

N2 = 5096 = 23 x 72 x 13, 

N3 = 586040 = 23 x 5 x 72 x 13 x 23, 

N4 = 16 120 = 23 x 5 x 13 x 31, 

N5= 1144 = 23x 11 X 13. 

As one can check, the representations associated to the ?F are onto, and the ?F are 
pairwise nonisogenous over Q. Now Theorem 2 is a consequence of the following 
more precise result: 

Proposition 1. To every point M = (x, y) of F(Q) satisfying (23), let us associate 
the quintuple (?1,?F2,?F3,?F4,?F5) as above. Then, except for a finite number of such 
points M, 

(a) the representations associated to the Si are onto, and 
(b) the fj are pairwise nonisogenous over Q. 

Proof. The formulas (21), (7), (19), (20) define nonconstant elements t, z, u, v, s of 
the function field Q(F). By 4.2, the number of points M such that the image of 
the representation Pt associated to Et is contained in the normalizer of a Cartan 
subgroup of GL(EU [7]) is finite. To prove assertion (a) (for almost all M), it remains 
to show that the number of points M such that the image of the representation 
Pt associated to Et is contained in a Borel subgroup of GL(Et[7]) is also finite. 
Consider such a point M. One has j(Et) = f(M), for a suitable nonconstant 
function f e Q(F). On the other hand, 4.2 shows that there is a point M' = (X, Y) 
of C(Q) such that j(Et) = g(M'), for some nonconstant function g e Q(C). The 
conclusion now comes from Lemma 3, since the elliptic curves T are C are not 
isogenous over Q; indeed we can apply Lemma 1, noting that C has no complex 
multiplication and that one has, for instance, a,1(C) = -4, whereas a,1(F) = -6. 
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Now let us prove assertion (b). For i = 1, .. ., 5, there is a nonconstant function 
fi e Q(F) such that, for every point M satisfying (23), 

j(6i) = fi(M). 

Consider then the following function T e Q(C): 

fl - ID (fi I fi), 
1 <i<1<5 

where 4 is the polynomial defined in 4.1. First T is nonzero, because we saw that 
the elliptic curves ?i associated to the point M = 2A were pairwise nonisogenous 
over Q. If now M is a point of F(Q) satisfying (23), and if from one side the 
representation Pt associated to Et is onto and from another side @(M) $4 0, then 
the point M satisfies conditions (a) and (b) of the proposition. 

6. SOME REMARKS 

Let us first explain briefly how we found the elliptic curves E, E', E". By the 
method of ?6 of [4], we obtained a lot of pairs (A, A') of nonisogenous elliptic curves 
over Q giving symplectically isomorphic representations, j(A) (j(A) - 1728) being a 
square. To this end, use was made of the tables of J. Cremona giving the list, up to 
isogeny, of Weil curves having conductor < 5077; these tables are accessible by ftp. 
One could then guess the existence of a pair (E, E') having the properties listed in 
Theorem 1. The curve E was known; as to E', we just had to find j(E'). In this 
fraction, the denominator was essentially known, and the numerator was obtained 
by Lagrange interpolation. Similarly, for each pair (A, A') as above, corresponding 
to the parameter t, the values of the polynomials gi (considered in 3.4) at t were 
found with the help of the LLL algorithm (cf. the proof of Lemma 4 of [4]). Lagrange 
interpolation then gave the ai themselves. Of course, the congruence (11) still had 
to be checked, which was done, using Pari once mdre. 

Also, the following question arises naturally. For an elliptic curve A, consider 
the condition (*) in Corollary 1, which amounts to saying that A may be defined 
by a WeierstraB3 equation for which the C4 invariant is a square (in the base field). 
Is there some reasonable (probably not modular) interpretation of this condition? 

Let us recall finally why one could suspect the existence of pairs similar to the 
pair (E, E') in Theorem 1, as mentioned in [3]. In loc. cit. one introduces a certain 
surface Z = Z7,1, which is normal, projective, and defined over Q, as well as its 
desingularization Z. The surface Z essentially classifies the isomorphism classes of 
triples (E, E', p) consisting of two elliptic curves E, E' and a symplectic isomor- 
phism p from E[7] onto E'[7] compatible with the action of Galois. In loc. cit., it 
is shown that the surface Z is rational, which gives a possible explanation. Note 
that in some of the proofs above one could also use the surface Z. As an example, 
the classes of triples (E, E', p), where E, E' are defined over Q and isogenous over 
Q, belong to a finite number of curves on Z. These curves have to be removed if 
one is interested in the nontrivial points of Z rational over Q. 
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